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Some Fundamental and Practical Limits on
Broadband Matching to Capacitive Devices,
and the Implications for SIS Mixer Design

A. R. Kerr, Fellow, IEEE

Abstract— In a given frequency band, the achievable match
between a capacitive microwave or millimeter-wave device and a
resistive source is limited by the capacitance of the device and its
series inductance. The fundamental limit on the match bandwidth
is examined for three circuits: 1) parallel RC, 2) parallel RC
with series I, and 3) parallel RC' L with series L. The broadband
matching theories of Bode (1945) and Fano (1950) are used,
the latter modified to avoid the standard low-pass to band-pass
mapping in case 2) because the terminals of the capacitance are
not generally accessible for connection of the requisite parallel
inductor. The results are fundamental to the design of broadband
mixers, multipliers, switches, and detectors using Schottky diodes
or SIS junctions,

Practical limitations imposed by the minimum realizable di-
mensions of millimeter-wave integrated circuits fabricated by
standard photolithography are discussed in the context of SIS
mixers with series arrays of junctions, and an example of a
coplanar SIS mixer design is given. For a series array of NV
devices with a given total resistance, it is shown that there is an
upper limit to /V, below which the theoretical match bandwidth
depends only on the RC product of the devices and not on the
series inductance of the array.

1. INTRODUCTION

ANY semiconductor and superconductor devices are

inherently capacitive and can be well described by
the parallel RC circuit shown in Fig. 1(a). This is true of
Schottky diodes and SIS superconducting quasi-particle tunnel
junctions at frequencies up to several hundred gigahertz. In
many practical cases, the geometry of the device adds an
unavoidable series inductance, as indicated in Fig. 1(b). For
either circuit the bandwidth over which it is possible to couple
power efficiently to the device from a resistive source can be
increased, often considerably, by inserting a lossless matching
network between the source and the device. In some cases, it
is possible to connect an inductive tuning element directly
across the terminals of the intrinsic device, as shown in
Fig. 1(c). The purpose of the present work is to determine
the fundamental match-bandwidth limits of these circuits.
Specifically, in Sections II-V, we determine the lowest upper
bound on the magnitude of the reflection coefficient that can
be achieved over a given frequency band. This is illustrated in
Fig. 2, where it is required that |p| < p, within the frequency
band w; < w < wsg, but can have any value outside that
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Fig. 1. Equivalent circuits of (a) a capacitive device, (b) a capacitive
device with series inductance, and (c) an inductively tuned device with series
inductance.
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Fig. 2. |p| is required to lie below the solid curve. The minimum possible

value of pg, in the given frequency band w1 to wa, is to be determined.

frequency range. The resulting minimum possible value of
pq is of fundamental importance in the design of broadband
circuits incorporating semiconductor diodes or SIS junctions.
In Sections VI-IX the practical implications of these results
are examined.

This work uses the well-known broadband matching theory,
published in 1945 and 1950, of Bode [1] and Fano [2]. In
their work, the conditions for physical realizability were used
to derive limits on the voltage reflection coefficient of a given
load with an arbitrary lossless matching network. In Section II
of this paper, Bode’s match-bandwidth limit is applied to the
circuit of Fig. 1(a). In Sections IIl and IV, the theory of Fano
is used to derive limits for the circuits of Fig. 1(b) and (c).
For the case of Fig. 1(b), this requires a slight modification
to the theory to cover the case of band-pass matching without
the use of the usual low-pass to band-pass mapping. Section V
presents the theoretical bandwidth limits for the three circuits
of Fig. 1 in graphical form. It is apparent that the series
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inductance of a device limits the bandwidth of a circuit only
when it exceeds a certain value that depends on R and C.

Section VI discusses the implications of the maltch-
bandwidth limits for practical double-sideband mixers, using
broadband SIS mixers as examples. Sections VII and VIII
examine the practical constraints on the series inductance of
devices and series arrays of devices in coplanar waveguide
circuits, and give an example of a broadband coplanar SIS
mixer with an array of junctions. For circuits using series
arrays of devices, it is shown that there is no trade-off between
the attainable bandwidth and the number of devices in the
array so long as the number of devices does not exceed a
critical value.

. THE CAPACITIVE DEVICE

In the case of the simple circuit of Fig. 1(a), connected via
a lossless matching network to a resistive source, Bode [1]
showed that the reflection coefficient p is constrained by the
integral equation:

/Oooln|1/p(w)|~dw§7r/RC. 1

Inspection of (1) indicates that the lowest value of the upper
bound of {p| (p, in Fig. 2) within the frequency band w; <
w < ws is achieved when |p| = p, within that band, and
|o| = 1 at all other frequencies. The optimum |p(w)| therefore
coincides with the solid curve in Fig. 2. The integral in (1) is
then simply evaluated, giving

In (1/pa,min) = 7/RC (w2 — w1). 2

It is apparent that p, min depends on the desired bandwidth
(we — wq) but not on the location of the band along the
frequency axis.

III. THE CAPACITIVE DEVICE WITH SERIES INDUCTANCE

Fano [2] extended the work of Bode to include a more
general load equivalent circuit for the case of low-pass match-
ing (i.e., for w; = 0 in Fig. 2). This can be applied to
the case of band-pass matching by using the standard low-
pass to band-pass mapping, w — w,(w/w,; — wy/w), which
transforms all inductors and capacitors in the circuit into series
or parallel LC resonators. However, this transformation is not
applicable to the device described by Fig. 1(b), as the terminals
of the capacitor are not accessible for connection of a parallel
inductor. The procedure of Fano is applied below, modified
slightly to avoid using a low-pass to band-pass transformation,
to determine the lowest possible value of the upper bound
of the magnitude of the reflection coefficient within a given
frequency band, for the circuit of Fig. 1(b).

The given device and its external matching circuit are
depicted in Fig. 3. Following Fano, the best possible match
over a specified frequency band is deduced from consideration
of the function F'(s) = In(1/p1(s)), where s = o + jw is
the complex frequency variable. Expanding F'(s) as a Taylor
series in 1/s:

F(s)=In(1/p1) = jAo+ A1(1/s) + As(1/s)* +--- (3)
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Fig. 3. The load R and network N’ are part of the given device. Network
N'' contains reactive matching elements.

The coefficient Aq is equal to O or «, and the other A, must
also be real since |p;| is an even function of w and arg (p,) is
an odd function of w. Fano showed [2, pp. 62-63] that, since
the m transmission zeros of N' must also be transmission zeros
of the whole circuit (N’ + N"), it follows that, except in the
degenerate case discussed below, py and its first (2m — 1)
derivatives, evaluated at the transmission zeros of N', are
independent of the matching network N”. The same is true of
In (1/p1) and its derivatives. The first 2m Taylor coefficients,
A, = (1/n))d"F(s)/d(1/s)™, can therefore be evaluated
from a knowledge only of the equivalent circuit of the given
device.

If the left-hand element of N* is of the same type (L or C)
and orientation (series or parallel) as the right-hand element of
N, the circuit is said to be degenerate. N' and N then have
a common transmission zero and only (2m — 1) derivatives of
p1 are independent of N [2, pp. 71-731.

Now consider the circuit of Fig. 1(b), terminated on the right
by an arbitrary resistance, as shown in Fig. 4. For convenience,
the values of the circuit elements are impedance-scaled to
R = 1 ohm (the impedance level has no effect on reflection
coefficient or matching bandwidth). The network N’ has two
zeros of transmission, due to C and L, both at s = o0, so
m = 2. Then,

, sL+r
L 4
4 s2LC + srC + 1 @
and
1 _ Z1+1 $2LC + s(L+7C) + (1 +7) ®)

p Z—1  $2LC—s(L—rC)+(1-7)

In terms of the variable £ = /5,

2(1 LC
I [i} :ln {_5 (14+7)+ &L +rC)+ } ©
p1 El-r)-¢L-rC)+LC
The first 2m Taylor coefficients A, are obtained from the

derivatives of In (1/p;1) evaluated at £ = 0, and are indepen-
dent of the arbitrary resistance r as expected:

2L-3C
and A3 = 5—2—673—
()

2
A==, A2 =0,

A = i
JA0 JT, C

When the network N’ in Fig. 3 has two transmission zeros
at s = oo, Fano showed that, in the nondegenerate case,
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Fig. 4. The network N', for the circuit of Fig. 1(b), arbitrarily terminated on
the right. Values of the circuit elements are impedance-scaled to R = 1 ohm.

physical realizability of the matching network N requires
the following integral equations to apply:

e 1 T
/0 In - dw——Z—(Al—2Z)\m) ®)
/Oowzln — dw:—E<A3—-—2-Z)\3‘ )
0 1 2 3 ")

where A\.; = oy, + jwy, are the zeros of p; that lie in the right
half of the s-plane, and depend on both networks N’ and N”
in Fig. 3. In the degenerate case, (8) alone is required.

The upper bound on |pi| is minimized if the matching
network N’ is chosen so that within the pass band, w; <
w X wa, |p1] is equal to the upper bound p,, while outside
the pass band |p;| = 1, as depicted by the solid curve in Fig.
2. With this form of p;(w), the integrals in (8) and (9) can
be evaluated, giving

(w2 = w1) I [1/pa] = (w/2) (A2 =237 Avi)

and

(10)
and
(@3 —wH)In [1/pa] = —(r/2) (345 = 2" A3)
an
These band-pass equations are similar to Fano’s low-pass
equations [2, (25) and (26)]. In the degenerate case, (10) alone
is required.

The remaining step is to find the right-half-plane zeros A,
of p; in (10) and (11) that maximize In |1/p,| (i.e., minimize
pa) for a given pass band, w; to ws. Following the argument
used by Fano for the nondegenerate low-pass case (w; = 0),
it is evident that to maximize In |1/p,] the matching network
must be selected so that A3, is as large as possible while

keeping 3 A; as small as possible. This is accomplished by
using a single real zero, o, [2, p. 72]. Then, from (10) and (11),
(wa —wi)ln |1/pa| = (7/2)(A1 — 20,) (12)

and
(w3 —wi) I |1/pa| = —(7/2)(345 — 207).  (13)

Eliminating o, between these equations, and putting K =
(2/7) 10 (1/ paymin) gives

K(w§ —w?) + 343 — (1/4)[A1 — K(wz —w1)]* =0, (14)

which is a cubic equation in K.

It is convenient at this point to change the frequency
variables from w; and ws to the center frequency wy and
fractional bandwidth b. Substituting wq = wo(1 — b/2) and
wa = wo(l + b/2) in (14) gives

Wb K® — 3wib? A1 K2 + wobw?ib? + 12wk + 342K
+ 1243 — A3] = 0. (15)

Substituting the values for A; and A3 from (7), and putting
X1 = wpL and Bg = woC, gives

12 24
LK%[——(HL)H]K =0,

K3 _ JORO—
bBo R\ B P X,BZ
(16)

which can be solved for K.

In the degenerate case, the first element of the optimum
matching network is inductive, thereby augmenting L. Equa-
tion (10) alone is then required, for which In |1/p,| is
maximized when p; has no right-half-plane zeros; i.e., X A,; =
0. Using A; = 2/C from (7), (10) becomes identical to the
Bode limit of (2). In terms of K, b, and B¢, the Bode limit
is given by:

2

K=—.
bB¢

(16a)

IV. THE INDUCTIVELY TUNED
DEVICE WITH SERIES INDUCTANCE

For an inductively tuned device with series inductance, as in
Fig. 1(c), the standard low-pass to band-pass mapping allows
the fundamental limit on the match bandwidth to be deduced
from the low-pass case. The low-pass prototype is simply the
circuit of Fig. 1(b). Equations (12) and (13) are used, with
w1 = 0, whence

wo K = A1 — 20, a7n
and
WiK = —3A3 + 202, (18)
Eliminating o, between these equations, and substituting for
Ap and Ay from (7), gives

6 12
3 2
K3 - —K
wyC' [w%C’z

oA
wiC?2L

+ 4} K 0, (19)
which can be solved for K (ws).
We now use the low-pass to band-pass mapping

W Wy

W= Wy | — — —|,
Wa w

(20)

where w, = 1/4/(L1C) is the resonant frequency of all
the LC' resonators in the transformed (band-pass) circuit.
Low-pass and band-pass circuits related by (20) have equal
bandwidths. Since the low-pass circuit under consideration has
a bandwidth equal to wo (i.e., wy = 0 in Fig. 2), the fractional
bandwidth of the band-pass circuit is 8 = wq/w,,. Substituting

wy = Pw, in (19) gives
4} K 24

6 12
K3 K2 + |: =
PBiC2L

B0 T paer -0 en
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The fractional bandwidth 8 used here differs in definition from
the fractional bandwidth b used in Section IIL If the band
edge frequencies are w, and wy, then 3 = (wy —w,)/w,, while
b = (wp—wa)/wo, where the mean frequencies w, = v/(wowp)
and wyg = (wa + wp)/2. To facilitate comparison between
results for the different equivalent circuits in the next section,
it is necessary to change the variables 8 and w,, in (21) to b
and wo using 8 = b//(1 — b?/4) and w, = wo /(1 — b%/4).
Writing Be = woC, and X, = wol gives

0 Kz+[-—12—+4}K 24 0.

K3 — —— - =
bBc b B, B BLX ]

(22)
In the degenerate case, when the first element of the
optimum matching network is inductive, the Bode limit applies
and is given by the low-pass to band-pass mapping of (2)
according to (20). The result is identical to (16a), viz.,

2

K= E (22&)

V. RESULTS AND DISCUSSION

It is not usually known in advance whether a particular
circuit of the form of Fig. 1(b) or (c), connected to its optimum
matching network, will be degenerate or not. If degenerate,
the series inductance L does not exceed some limiting value,
Lp, below which the match bandwidth is limited only by
C. The Bode limit then is attainable, and (16a) or (22a) is
applicable. If, on the other hand, the optimally matched circuit
is nondegenerate, then L > Lp, and the match bandwidth is
limited by C and L; (16) or (22) is then appropriate. In the
present work, however, this uncertainty does not present an
obstacle; the equations for both cases are solved, the correct
solution being the more restrictive one as is clear from the
graphical results below.

The parameters X7 = wolL and Bg = woC in (16), (16a),
(22), and (22a) apply to the circuits of Fig. 1 with impedances
scaled to R = 1. For the unscaled circuit, they become:

L
X, = “’—.;2_ and Be = woRC.

(23)

Equations (16), (16a), (22), and (22a) have been solved for
a range of values of Xz and B¢. As the present work was
done in the context of SIS mixer design, values of X7 and
B¢ appropriate to SIS mixers are used in the examples below.
Corresponding to a range of different devices, we have chosen
Be = wyRC = 2, 4, 8, and values of X1, = woL/R in the
range 0-10. The values of the lowest upper bounds, |94 min| 00
the reflection coefficient, and 1/(1— |pa,min|2) on the reflection
loss, versus fractional bandwidth b, are shown in Figs. 5 and 6
for the circuits of Figs. 1(b) and 1(c), respectively. The Bode
limit for L = 0 (i.e., the circuit of Fig. 1(a)) is indicated by
the dashed curves. The dotted curves, shown for comparison,
are for a parallel RC device tuned by a parallel inductor and
connected to a source resistance Rg chosen to maximize the
bandwidth for each value of |p, min|, but with no additional
matching (i.e., the circuit of Fig. 1(¢c) with L = 0). The short
horizontal lines indicate the values of |p| and 1/[1 — |p|?] at
frequency wq for a parallel RC device connected to a source

resistance R with no matching elements (i.e., the circuit of
Fig. 1(a)).

The Bode limit, indicated in Figs. 5 and 6 by the dashed
curves, applies when L is less than the quantity Lp, whose
value depends on the other elements of the equivalent cir-
cuit and the desired bandwidth. When L < Lp, the match
bandwidth is not limited by L, but only by C and R. In this
case, the first element of the optimum matching network is a
series inductance (Lp — L), effectively augmenting L. This
is the degenerate case discussed above. When L exceeds Lpg
(the nondegenerate case), it too limits the attainable match
bandwidth of the circuits, as indicated in the figures.

VI. APPLICATION TO MIXERS

In the case of mixers and other devices for which the opti-
mum source resistance does not correspond to an impedance
match, the quantity R should be identified with the optimum
source resistance Rs op¢ rather than the RF resistance of the
device. The reflection coefficient p in the above theory is
thus calculated using a characteristic impedance Zy = Rg,opt-
The bandwidth criterion |p| < p, then specifies the range of
embedding impedances within which the mixer performance
is considered acceptable—not only its RF match, but all the
parameters (conversion loss, noise, output impedance, etc.)
that governed the choice of definition of Rgopt. It should
be noted that, in the case of SIS mixers, B = woRC
is not the familiar wyRxCy product of the junction, where
Ry is its normal resistance, but is wolRg optCs. Likewise,
XL = UJOL/RS,opt-

The dependence of the performance of a typical 230-GHz
double sideband (DSB) SIS mixer receiver on embedding
admittance is indicated in Fig. 7, which shows contour plots of
the mixer and receiver parameters plotted on Smith charts of
RF embedding admittance (i.e., in the (—p)-plane) normalized
to the optimum source conductance 1/ Rs opt (RS,opt is defined
in the Appendix). The receiver includes an IF amplifier with
Tir = 4 K, and an IF isolator at 4 K. The IF load impedance
Zir is fixed and equal to Rgopt. The source (embedding)
admittance is defined to include the capacitance of the junc-
tion(s) and is assumed equal at the upper and lower sideband
frequencies. The mixer gain and receiver noise temperature
are shown as single-sideband (SSB) quantities. Further details
of the mixer and the method of analysis are given in the
Appendix.

Fig. 7 clearly demonstrates three quantum characteristics of
SIS mixers that are not possible in classical resistive mixers:
1) the (SSB) conversion loss is less than the 3-dB classical
limit for a DSB mixer, 2) the contours are asymmetrical about
the real axis, an effect caused by the quantum susceptance of
the SIS junction, and 3) the output resistance can be negative.
The significance of the negative output resistance is discussed
further below.

Table I summarizes the range of variation of the receiver
parameters in Fig. 7 when the embedding admittance falls
within the circles |p| = 0.2 and 0.4 (shown dotted in the figure)
over the frequency band of interest. It is clear from the table
that an SIS mixer whose embedding admittance is designed
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Fig. 5. For the capacitive device with series inductance (Fig. 1(b)), the lowest upper bounds, |pq,min| on the reflection coefficient, and 1 [€1=|pa,min|?)
on the reflection loss versus fractional bandwidth b, with woRC = 2, 4, and 8, and various vatues of wo L / R. The Bode limit for the case L = 0 is indicated
by the dashed curves. The dotted curves are for a parallel RC' device tuned by a parallel inductor but with no additional matching. The short horizontal lines
indicate the values of |p| and 1/[1 — |p|?] at frequency w0 for a parallel RC device connected to a source resistance R with no matching.

for [p] < 0.4 should have acceptable performance across similarly designed Nb/Al-Al,O3/Nb SIS mixers for operation
the intended frequency band for most practical applications. up to at least 360 GHz have well-behaved characteristics,
From simulations at other frequencies, we have found that with contour plots similar in character to those in Fig. 7 and
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Fig. 6. For the inductively tuned capacitive device with series inductance (Fig. 1(c)), the lowest upper bounds, |pa min| on the reflection coefficient, and
1/(1 —|pa,min|?) on the reflection loss versus fractional bandwidth b, with wo RC = 2, 4, and 8, and various values of wo L/ R. The Bode limit for the case
L = 0 is indicated by the dashed curves. The dotted curves are for a parallel RC' device tuned by a parallel inductor but with no additional matching. The short
horizontal lines indicate the values of |p| and 1/[1 — |p|?] at frequency wq for a parallel RC' device connected to a source resistance R with no matching.

with noise temperature close to the minimum. The bandwidth  Negative Output Resistance in SIS Mixers
On the contour plot of Rout/Z1r in Fig. 7, the transition

criterion |p| < |pmax| should therefore be appropriate when p
is calculated using a characteristic impedance equal to Rg opt.

of the output impedance from a large positive value to a
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Fig. 7. Contour plots of mixer gain, receiver noise temperature, input return loss, [F VSWR, and signal-to-image conversion gain, for a 230-GHz SIS receiver
with a typical Nb/Al-Al 203/Nb junction. The contours are plotted on Smith charts of RF embedding admittance (i.e., in the ( —p)-plane) normalized to
the optimum source conductance 1/ Rs opt. The dotted circles are |p| = 0.2 and 0.4. The receiver includes an IF amplifier with Tip = 4 K, and an IF
isolator at 4 K. The mixer gain and receiver noise temperature are shown as SSB quantities.

large negative value is quite sudden. However, if the contours
were re-plotted as output conductance, the transition from
positive, through zero, to negative would be quite smooth and
continuous, and there is no reason to expect any sudden change
in receiver performance as this occurs. Indeed, when funing a
receiver, this transition can often be observed on the pumped
I-V curve as the differential conductance at the bias point
goes from positive, through zero, to negative. However, under
certain conditions, the presence of negative output resistance
can have two adverse effects: 1) it can cause (small-signal)
instability and oscillation in the RF, IF or bias circuits, and
2) in a series array of junctions, negative DC differential
resistance can cause instability in the biasing of the junctions

and the division of the LLO voltage between them. These are
discussed further below. A third possible concern is that noise
from the IF amplifier or isolator, incident on the IF port of the
mixer, will be reflected with gain back into the amplifier from
the negative output resistance of the mixer. This, however, is
taken into account in the analysis used to generate Fig. 7.

1) A device with negative (differential) resistance is po-
tentially unstable. Depending on the device, it may be stable
with a high impedance load or with a low impedance, as
can be demonstrated by considering series and parallel LRC
circuits with negative resistance. (Analysis of the time-domain
differential equations describing these circuits shows that the
former is stabilized by a high-resistance load, and the latter by
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Fig. 7. (continued)

TABLE 1
lp] = 0.2 lpl < 0.4
Mixer conversion gain (SSB) -0.5 + -1.5 dB +0.5 + -4.0 dB
Receiver noise temp (SSB) 12 - 15 K 12 » 20 K
Input return loss > 8 dB > 5 dB
Signal-to-image conv. loss 9 -+ 11 dB 9 - 13 dB
Output VSWR (R, /Z1f) -17 - +6 -5 - +3

a low-resistance load.) In general, to determine the stability
of a negative resistance device connected to a load, the
complex impedance of the device and load must be known
at all frequencies. It is possible, however, to make some
general observations about the nature of the stability of mixers
with negative resistance. With no L.O power applied, an SIS
junction (or array) is stable, regardless of the embedding
impedance Z,.(w) and the reflection coefficient of the junction
(or array) with respect to the embedding impedance, |p;(w)| =
|Z; = 2%1/1Z;+ Ze| < 111}, where Z;(w) is the (small signal)
impedance of the junction. As the LO power is increased
it is possible that, at some frequency wi.,|p;| will become
infinite; i.e., Z;j(Wez) + Ze(wez) — 0. Under this condition,
the circuit is on the point of oscillation and an impulsive
excitation of the junction will cause undamped ringing at
frequency w.,. Because of the mixing action of the junction,
this incipient instability occurs simultaneously at ws, and
at all the related sideband frequencies nwpo + Wgg, —00 <
n < oo, at each of which |p;| — oo. Clearly, as the
LO power is increased from zero, instability is preceded by
high reflection gain and conversion gain at a complete set
of related sideband frequencies, but not necessarily within
the normal signal, image, and IF bands. In practice, one
can only ensure that as the LO power is increased from

zero to the operating level (usually o ~ 1), the gain does
not become large within the normal IF band, for which the
signal, image, and IF embedding impedances are known. In
the region of negative IF output resistance in Fig. 7, for
example, |Rout/Z1r| > 1.9 almost to the edge of the Smith
chart, and no instability would be expected at frequencies
where the IF load impedance Zip remains near its nominal
value. Instability could occur far above the IF band if the
bias-7T", circulator, or amplifier exhibited a resonance which
would allow Z;(wgy) + Ze(wzsz) = 0 to be satisfied. For the
broadband SIS mixers reported to date, this has not, apparently,
been a problem.

2) The second and less predictable effect of negative re-
sistance has been observed in fixed-tuned SIS mixers using
series arrays of SIS junctions [4]. It is suspected that negative
DC differential resistance in a series array can cause an
unstable situation in which the individual junctions become
unequally biased and unequally driven by the LO. Ultimately,
a stable dynamic state is reached in which the junctions remain
unequally biased and driven. As this instability appears to be
avoided in mechanically tunable mixers using arrays of SIS
junctions with integrated tuning circuits, similar to those used
in [4], we surmise that it can be avoided by appropriate design
of the embedding impedance as a function of frequency.
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Fig. 8. Series array of SIS junctions in coplanar waveguide and its equivalent
circuit. The dimensions (shown in microns) are chosen to give the lowest
series inductance consistent with reproducible fabrication using standard
photolithography. The physical length of such an array of N; junctions is
8Ny + 2) um.

VII. PRACTICAL CONSTRAINTS ON THE SERIES INDUCTANCE

For integrated circuits, such as mixers, multipliers, switches,
and modulators, in the ~100-400 GHz range, several basic
configurations are possible. These include waveguide mounts,
microstrip with conductors on one or both sides of the sub-
strate, suspended stripline, and coplanar waveguide circuits.
Of these, coplanar waveguide has two major advantages: 1)
it allows the use of a relatively thick substrate (e.g., 0.0035"
quartz for a 200-300 GHz mixer [4]), and 2) with the center
conductor and ground-plane on the same side of the substrate,
transmission line dimensions can be kept small to minimize the
parasitic inductance and capacitance associated with a series
array of devices, which can ultimately limit the bandwidth of
the circuit. A broadband transducer from coplanar waveguide
to rectangular waveguide can be made using an intermediate
section of suspended stripline, as described in [5].

In practical applications, a series array of devices may be
preferable to a single device for two reasons. First, for a
given overall impedance level, an array has greater power
handling capacity and dynamic range than a single device.
This can be an important benefit in frequency multipliers and
mixers. Secondly, the devices in a series array are larger
than a single device of the same impedance as the array.
This can substantially reduce the difficulty of fabrication
and result in better quality devices. The (theoretical) match
bandwidth of an array of devices is only less than that of
the equivalent single device if the array is so long that the
series inductance of the array exceeds the value Lz mentioned
above; otherwise, the Bode limit predicts equal maximum

2.0
1.8 1
1.6
1.4

1.2 7

wl/R
o

0 1 2 3 4 5 6 7 8
NO. OF JUNCTIONS

Fig. 9. Normalized series reactance wL/R of arrays of SIS junctions in a
coplanar waveguide with the dimensions shown in Fig. 8. A quartz substrate is
assumed, with ¢, = 3.8, For SIS mixers, R is the optimum source resistance
of the array, Rs,opt. taken here as 50 Q2. The curvature of the lines for larger
arrays at higher frequencies is a result of the significant electrical length of
the array. The horizontal dashed lines indicate the values of wL/R above
which the inductance of the array limits the achievable match-bandwidth, for
wRC = 2, 4, and 8.

7

_

Fig. 10. A two-junction SIS mixer in coplanar waveguide, with inductive
tuners on each junction.

bandwidths for the single device and the array. The SIS
mixer examples below assume the simple coplanar array of
junctions shown in Fig. 8, with physical dimensions chosen to
give the lowest series inductance consistent with reproducible
fabrication using standard photolithography.

For the circuit of Fig. 8, the series inductance depends on the
number Ny of junctions. Fig. 9 shows the normalized series
reactance wL/R of the circuit as a function of the number
of junctions in the array, with frequency as parameter. The
resistance R = Rg opt is the optimum source resistance of the
array, taken as 50 €2 in this example. A quartz substrate, with
er = 3.8, is assumed. At higher frequencies, and for larger
numbers of junctions, the electrical length of the coplanar
line becomes significant, as indicated by the curvature of
the upper curves in Fig. 9, and the circuit can no longer be
characterized accurately as an array of RC' devices in series
with a frequency-independent inductance. The values of wL/R
in Fig. 9 can be used with Fig. 5 to determine the upper
(Bode/Fano) limit of the RF match bandwidth of this circuit.
The horizontal dashed lines in Fig. 9 indicate the values of
wL/R above which the inductance of the array limits the
achievable bandwidth, for wRC =2, 4, and 8. For a given
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Circuit of the 250-GHz SIS mixer used in the example. The coplanar SIS array is the same as in Fig. 8 and has a total normal resistance

Ry = 629 and wRyC = 5, corresponding to Rs opt = 508 and wRs optC = 4. The matching network contains a capacitor C4 in series with

four transmission line sections. The source resistance Rg = 50€.

frequency of operation, the intersection of the appropriate solid
curve with the dashed curve corresponding to the given value
of wRC, indicates the cross-over from the Bode limit (due
only to R and C) to the Fano limit. These intersections also
indicate the maximum number of junctions that can be used for
a given wRC without limiting the RF bandwidth . If a smaller
number of junctions is used, the first element of the optimum
matching network is an additional inductance, and the Bode
limit can, in principle, be attained.

For the circuit of Fig. 8, with only one or two junctions, it
is possible to use inductive tuners on the individual junctions
[6] to tune out their capacitance, as indicated in Fig. 10. In
this case, the bandwidth limits of Fig. 6 apply. It is clear
that for |p| < 0.2 or 0.4, the series inductance does not limit
the achievable bandwidth, and the Bode limit applies in most
practical cases. Mixers described in [7]-[12] have successfully
used one or two individually tuned junctions, though not in
a coplanar transmission line circuit. The use of individual
inductive tuners with more than two junctions is not possible
in this simple coplanar circuit configuration without orienting
the additional tuners perpendicular to the center conductor.
This would introduce unacceptable capacitance between the
tuners and the ground plane. To avoid this, the ground plane
can be removed in the vicinity of the tuners. Such an approach
has been successfully used in SIS mixers for 75-110 GHz [5]
and 200-300 GHz [4], but the equivalent circuit is much more
complicated [13], and this configuration will not be discussed
further here.

The choice of the number of junctions in series, Ny,
in an SIS mixer depends on two main factors: the desired
dynamic range (or saturation power level) and the smallest
size of junction that can be made with sufficient quality and
reproducibility. For a given embedding impedance and critical
current density Jc, the required junction area is proportional
to N7, so several minimum size junctions in series may be
required to reach the desired embedding impedance level. The
saturation power of an SIS mixer is proportional to (wNy)?
[14], [15], which may therefore govern the minimum value of
Nj;. As the series inductance of the SIS array increases with
Ny, it follows that the designer may in some cases be faced
with a trade-off between bandwidth and dynamic range: using
more junctions in series to increase the saturation power will
reduce the available RF bandwidth of the mixer if the series
inductance of the array exceeds the value Lp.

VIII. AN EXAMPLE

Although the question of how closely the Bode and Fano
bandwidth limits can be approached using practical circuits
is outside the scope of the present work, it is informative to
examine a realistic example. We choose a 250-GHz mixer with
a coplanar array of SIS junctions, and a matching circuit of
moderate complexity. A four junction coplanar array, as shown
in Fig. 8, is connected to a matching network containing a
series capacitor and four transmission lines in series, similar,
except for the capacitor, to the tuning circuit discussed in
[7]. The complete circuit is shown in Fig. 11. Note that the
electrical length of the array of junctions is small and the
equivalent circuit of Fig. 1(b) is applicable. The SIS junctions
are characterized by a normal resistance Ry = 62 ohms (for
the array) and woRyC = 5, corresponding to an optimum
source resistance Rg opt = 50 ohms, and woRs,0ptC = 4 (se€
Appendix).

The capacitor C4 was initially adjusted to resonate the SIS
array at the center frequency. Lines 1, 2, and 3 were set to
a quarter wavelength, and the fourth line was set to half a
wavelength. The microwave circuit design program MMICAD
[16] was then used to optimize the elements of the matching
network to give |p| < 0.4 over the widest possible bandwidth,
where p is calculated with a characteristic impedance #y =
Rs opt- The resulting embedding admittance is shown in Fig.
12 on an admittance Smith chart (( —p)-plane). The optimized
values of the elements in the matching network are: Cq = 75

fF, Zoy = 2480, Zgy = 2.34Q,Zp3 = 1650, 701 =
61.2Q,1; = 0.265Xz0,ls = 0.246 A 0,13 = 0.254 \y0, and
Iy = 0.516 Ag0.

The magnitude of the reflection coefficient |p| < 0.4 from
206-296 GHz, giving a fractional bandwidth b = 0.36. For
comparison, the Fano bandwidth limit for the same mixet can
be deduced from Fig. 5, using wRC = 4 and wL/R = 0.4
(from Fig. 9), and is bpan, = 0.55. The Bode limit for an
SIS junction with wRC = 4 is bpode = 0.85. The bandwidth
for an inductively shunted junction (i.c., with a parallel tuning
inductor and no other matching elements) with the same value
of wRC, is b;s; = 0.24. These numbers are listed in decreasing
order in Table II.

IX. CONCLUSION

From Fano’s theoretical limit on the low-pass match band-
width of the circuit of Fig. 1(b), the limit on the band-pass



12 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 1, JANUARY 1995

Fig. 12. Embedding admittance of the SIS mixer in Fig. 11 after optimizing
the matching network to give the widest possible bandwidth with |p| < 0.4
(indicated by the dotted circle). Admittances are normalized to the optimum
source conductance of the array 1/Rg opt-

TABLE II
Circuit © b
Bode limit for parallel RC 85%
Fano limit with series L 55%
Circuit of Fig., 11 36%
RC with parallel L tuning 24%

match bandwidth of the circuit of Fig. 1(c) is obtained via the
standard low-pass to band-pass mapping in which the inductors
and capacitors are transformed into series and parallel LC
resonators. When the terminals of the intrinsic device are
not accessible, it is not possible to connect an inductor in
parallel with €, and the low-pass to band-pass mapping cannot
be used. Here, Fano’s analysis is extended to determine the
theoretical limit on the match bandwidth of the circuit of Fig.
1(b) without using frequency mapping. For the circuit of Fig.
1(a), the theory of Bode is used.

For the equivalent circuits of Figs. 1(b) and (c), it is found
that the series inductance L limits the match bandwidth only
when it exceeds a value L 5, which depends on the other circuit
elements and on the desired value of |pg min|- For values of L
less than L g, Bode’s bandwidth limit is theoretically attainable
and there is no fundamental reason to make L smaller than
Lp when designing a broadband circuit. We conclude that
using a series array of Ny devices imposes no restriction on
the theoretically attainable bandwidth of the circuit as long as
Ny does not exceed the number for which the series inductance
of the array is equal to Lg.

In circuits using series arrays of devices, the power handling
capacity or saturation level depends on NZ2. It is possible that

HY430C5K11 at 4.2 K
200

N 5 10 15
vV mV

I-V curve used in the analysis (from [17]).

Fig. A-1.

in designing a broadband circuit there will be a conflict be-
tween power handling (requiring more devices) and bandwidth
(requiring fewer devices) if the series inductance of the array
exceeds Lp.

In mixers and other devices for which the optimum source
resistance does not correspond to an impedance match, a
bandwidth criterion is obtained by specifying the range of
embedding impedances within which acceptable performance
is obtained. This corresponds to the requirement that |p| <
|Pmax |, Where p is calculated using a characteristic impedance
equal to the optimum source resistance. For the example of a
250-GHz SIS mixer with typical niobium junctions, it is found
that acceptable performance requires |p| < 0.4, where p is
normalized to the optimum source impedance given by mixer
theory. When the mixer is realized in a coplanar waveguide
circuit using a junction with wRnyC = 5, a useful bandwidth
of 36% (comparable to a standard waveguide bandwidth) is
achievable without the use of inductive tuning circuits on the
individual junctions. A similar mixer with a simple inductively
tuned junction (parallel RC'L), but with no other matching
elements, would have a bandwidth of 24%. These figures are
to be compared to the maximum theoretical bandwidth of 55%.

X. APPENDIX: DETAILS OF THE SIS
MIXERS USED IN THE SIMULATIONS

The design procedure used here for SIS mixers was initially
described in [17] and [4]. For a typical Nb/Al-Al,O3/Nb
mixer, with the junction capacitance tuned out by a paral-
lel susceptance, the optimum source admittance is 1/Rg opt
where Rsopt = (Bn/2.4)(fauz/100)° 2. Ry is the normal
resistance of the junction (or array of junctions). The corre-
sponding optimum IF load impedance Zir is also equal to
B opt. The pumping parameter o = eVi,0/fiwro = 1.2, with
the DC bias voltage at the mid-point of the first photon step.
For Nb/Al-Al;O3/Nb SIS mixers operating up to at least 60%
of the gap frequency this set of operating conditions has been
found to result in well-behaved receivers with conversion loss
near unity, noise temperature close to the minimum, and input
return loss >10 dB.

The computed simulations use the quasi-five-frequency ap-
proximation [18] to Tucker’s theory, which assumes a sinu-
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soidal LO voltage at the junction(s) but terminates the second
harmonic sidebands (2wro £wrr) in the junction capacitance.
The I-V curve, shown in Fig. A-1, is that of a typical series
array of four Nb/Al-Al;O3/Nb junctions [17].
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